Add like
Add dislike
Add to saved papers

Efficient shapes for microswimming: From three-body swimmers to helical flagella.

Journal of Chemical Physics 2017 Februrary 29
We combine a general formulation of microswimmer equations of motion with a numerical bead-shell model to calculate the hydrodynamic interactions with the fluid, from which the swimming speed, power, and efficiency are extracted. From this framework, a generalized Scallop theorem emerges. The applicability to arbitrary shapes allows for the optimization of the efficiency with respect to the swimmer geometry. We apply this scheme to "three-body swimmers" of various shapes and find that the efficiency is characterized by the single-body friction coefficient in the long-arm regime, while in the short-arm regime the minimal approachable distance becomes the determining factor. Next, we apply this scheme to a biologically inspired set of swimmers that propel using a rotating helical flagellum. Interestingly, we find two distinct optimal shapes, one of which is fundamentally different from the shapes observed in nature (e.g., bacteria).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app