Add like
Add dislike
Add to saved papers

The Role of Inflammation in the Mechanisms of Bile Acid-Induced Liver Damage.

BACKGROUND: The mechanism by which bile acids induce liver injury in cholestasis remains controversial. Although high levels of bile acids are toxic when applied to liver cells, the level of toxic bile acids in the liver of most cholestatic animals and patients is <10 μM, indicating there must be alternative mechanisms. Recent studies suggest that the inflammatory response may play an important role in bile acid-induced liver injury, as pro-inflammatory cytokine expression is stimulated by bile acids in mouse hepatocyte cultures. To elucidate the mechanisms of bile acid-induced liver injury, we assessed signs of liver damage and gene expression in Abcb4-/- mice, a well-known model for cholestasis. Key Messages: Elevated plasma levels of bile acids were detected as early as 10 days after birth and at all later ages in Abcb4-/- mice compared to their wild-type littermate controls. Parallel increases in expression of Tnfα, Ccl2, Cxcl1, and Cxcl2 mRNA occurred at these early time points and throughout 12 weeks in Abcb4-/- livers. Marked hepatic neutrophil infiltration was first detected in 3-week mice, whereas histological evidence of liver injury was not detected until 6-weeks of age. Subsequent in vitro studies demonstrated that normal hepatocytes but not other non-parenchymal liver cells responded to bile acids with inflammatory cytokine induction.

CONCLUSION: Bile acids induce the expression of pro-inflammatory cytokines in hepatocytes in Abcb4-/- mice that initiates an inflammatory response. This inflammatory response plays an important role in the development of cholestatic liver injury in this and other cholestatic conditions. Furthermore, understanding of these inflammatory mechanisms should lead to new therapeutic approaches for cholestatic liver diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app