Add like
Add dislike
Add to saved papers

A theoretical investigation of orientation relationships and transformation strains in steels.

The identification of orientation relationships (ORs) plays a crucial role in the understanding of solid phase transformations. In steels, the most common models of ORs are the ones by Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS). The defining feature of these and other OR models is the matching of directions and planes in the parent face-centred cubic γ phase to ones in the product body-centred cubic/tetragonal α/α' phase. In this article a novel method that identifies transformation strains with ORs is introduced and used to develop a new strain-based approach to phase-transformation models in steels. Using this approach, it is shown that the transformation strains that leave a close-packed plane in the γ phase and a close-packed direction within that plane unrotated are precisely those giving rise to the NW and KS ORs when a cubic product phase is considered. Further, it is outlined how, by choosing different pairs of unrotated planes and directions, other common ORs such as the ones by Pitsch and Greninger-Troiano can be derived. One of the advantages of our approach is that it leads to a natural generalization of the NW, KS and other ORs for different ratios of tetragonality r of the product body-centred tetragonal α' phase. These generalized ORs predict a sharpening of the transformation textures with increasing tetragonality and are thus in qualitative agreement with experiments on steels with varying alloy concentration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app