Add like
Add dislike
Add to saved papers

Precise Identification of Graphene's Crystal Structures by Removable Nanowire Epitaxy.

Monitoring crystallographic orientations of graphene is important for the reliable generation of graphene-based nanostructures such as van der Waals heterostructures and graphene nanoribbons because their physical properties are dependent on crystal structures. However, facile and precise identification of graphene's crystallographic orientations is still challenging because the majority of current tools rely on complex atomic-scale imaging. Here, we present an identification method for the crystal orientations and grain boundaries of graphene using the directional alignment between epitaxially grown AuCN nanowires and the underlying graphene. Because the nanowires are visible in scanning electron microscopy, crystal orientations of graphene can be inspected with simple procedures. Kernel density estimation that we used in analyzing the nanowire directions enables precise measurement of graphene's crystal orientations. We also confirm that the imaged nanowires can be simply removed without degrading graphene's quality, thus showing that the present method can be practically used for measuring graphene's crystal structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app