Add like
Add dislike
Add to saved papers

Magnetization shaping generated by tight focusing of azimuthally polarized vortex multi-Gaussian beam.

Applied Optics 2017 March 2
Combining the vector diffraction theory with the inverse Faraday effect, we have theoretically studied magnetization shaping generated by tight focusing of an azimuthally polarized multi-Gaussian beam superimposed with a helical phase. By selecting optimized parameters of a multi-Gaussian beam and topological charge of a spiral phase plate, not only a super-long and sub-wavelength longitudinal magnetization needle with single/dual channels for a single-lens high numerical aperture focusing system, but also an extra-long and three-dimensional super-resolution longitudinal magnetization chain with single/dual channels for a 4π high numerical aperture focusing system is achieved in the focal region. Furthermore, by continuously changing the phase difference between two counter-propagating beams, these super-long longitudinal magnetization chains with three-dimensional super-resolution can dynamically move along the z-axis. It is expected that these results pave the path for fabricating magnetic lattices for spin wave operation, multiple atoms or magnetic particle trapping and transportation, confocal and magnetic resonance microscopy, as well as multilayer ultrahigh density magnetic storage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app