Add like
Add dislike
Add to saved papers

Hierarchical Structural Evolution of Zn 2 GeO 4 in Binary Solvent and Its Effect on Li-ion Storage Performance.

Zinc germinate (Zn2 GeO4 ) with a hierarchical structure was successfully synthesized in a binary ethylenediamine/water (En/H2 O) solvent system by wet chemistry methods. The morphological evolution process of the Zn2 GeO4 was investigated in detail by tuning the ratio of En to H2 O in different solvent systems, and a series of compounds with awl-shaped, fascicular, and cross-linked hierarchical structures was obtained and employed as anode materials in lithium-ion batteries. The materials with fascicular structure exhibited excellent electrochemical performance, and a specific reversible capacity of 1034 mA h g-1 was retained at a current density of 0.5 A g-1 after 160 cycles. In addition, the as-prepared nanostructured electrode also delivered impressive rate capability of 315 mA h g-1 at the current density of 10 A g-1 . The remarkable electrochemical performances could be ascribed to the following aspects. First, each unit in the three-dimensional fascicular structure can effectively buffer the volume expansions during the Li+ extraction/insertion process, accommodate the strain induced by the volume variation, and stabilize its whole configuration. Meanwhile, the small fascicular units can enlarge the electrode/electrolyte contact area and form an integrated interlaced conductive network which provides continuous electron/ion pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app