Add like
Add dislike
Add to saved papers

Noninvasive Determination of HV Interval Using Magnetocardiography.

BACKGROUND: The His-ventricular (HV) interval is an important index of atrioventricular conduction, but at present can be reliably measured only during an invasive electrophysiology (EP) study. Magnetocardiography (MCG) is a noninvasive measurement of weak magnetic fields generated by the heart. We compared HV interval noninvasively assessed using MCG with the corresponding values measured directly in an EP study.

METHODS: MCG was measured using a 37-channel system inside a magnetically shielded room in patients who had previously undergone an EP study. His-bundle potential was identified in the PR segment after signal averaging. Magnetic field maps representing the spatial distribution of ramp-like signals in the PR segment generated at various instants of time were used to identify His-bundle signals in cases where the deflection representing the His was ambiguous.

RESULTS: The study included 23 patients (14 male, nine female) with a wide range of HV intervals measured during EP study (49 ± 17 ms, range 35-120 ms). In 21 (91%) subjects, discernible His-bundle signals are observed in the PR segment of MCG traces. HV intervals measured between the two methods showed a correlation (r2 = 0.87, P < 0.0001) with a mean difference of 5.4 ± 3.2 ms.

CONCLUSION: With the use of new criteria to identify the His-bundle deflection in signal-averaged MCG signals, we report a high success rate in noninvasive HV interval measurement and a good agreement with those from EP study. The results encourage the use of MCG as a noninvasive method for measurement of the HV interval.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app