Add like
Add dislike
Add to saved papers

Sea lice infestation levels decrease with deeper 'snorkel' barriers in Atlantic salmon sea-cages.

BACKGROUND: Salmon lice (Lepeophtheirus salmonis) are the most important parasites of farmed salmon. Infective larvae position themselves in the upper part of the water column to increase encounter probabilities with potential hosts. Previous studies have shown that a 'snorkel' sea-cage technology protects salmon from infection in surface waters. We tested whether deep snorkels would more effectively reduce lice infestation than shallow snorkels and still uphold adequate conditions for the fish. Five sea-cages (12 m × 12 m) each holding approximately 3000 Atlantic salmon (Salmo salar) (53 ± 10 g) were fitted with snorkels that gave protection from infection for 0, 4, 8, 12 or 16 m. We tested whether reductions in the settlement of new salmon lice copepodids were consistent among four separate infection periods.

RESULTS: Lice infestation decreased exponentially with depth in all time periods. Infection levels in shallow snorkels (0 and 4 m) were consistently 4-10 times higher than those in deep snorkels (12 and 16 m). Key welfare and production performance indices were similar across all snorkel depths.

CONCLUSION: Deeper snorkels dramatically and consistently reduced infection levels of salmon lice compared with shallow snorkels, without consequences for fish welfare and production performance. Therefore, reducing salmon sea lice encounters using a depth-based barrier is a powerful management tool for salmon farming. © 2017 Society of Chemical Industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app