Add like
Add dislike
Add to saved papers

p-Type transition-metal doping of large-area MoS 2 thin films grown by chemical vapor deposition.

Nanoscale 2017 March 10
Two-dimensional transition metal dichalcogenides (e.g. MoS2 ) have recently emerged as a promising material system for electronic and optoelectronic applications. A major challenge for these materials, however, is to realize bipolar electrical transport properties (i.e. both p-type and n-type conduction), which is critical for enhancing device performance and functionalities. Here, we demonstrate the transition metal zinc as a p-type dopant in the otherwise n-type MoS2 , through systematic characterizations of large area Zn-doped MoS2 thin films grown by a one-step chemical vapor deposition (CVD) approach. Raman characterization and X-ray photoelectron spectroscopy studies identified millimeter-scale, monolayer films with 1-2% Zn as dopants. Zinc doping suppresses n-type conductivity in MoS2 and shifts its Fermi level downwards. The stability and p-type nature of Zn dopants were further confirmed by density-functional-theory calculations of formation energies and electronic band structures. The electrical transport properties of Zn-MoS2 films can be influenced by stoichiometry, and p-type gate transfer characteristics were realized by thermal treatment under a sulfur atmosphere. Our work highlights transition-metal doping followed by sulfur vacancy elimination in CVD grown films as a promising route for achieving large area p-type transition metal dichalcogenide films that are essential for practical applications in electronics and optoelectronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app