Add like
Add dislike
Add to saved papers

Purification, characterization and procoagulant activity of polysaccharides from Angelica dahurice roots.

Five polysaccharides, namely ADPs-1a, ADPs-1b, ADPs-2, ADPs-3a and ADPs-3b, were extracted from Angelicae dahuricae Radix, purified, and identified by high performance gel permeation chromatography (HPSEC), gas chromatography (GC), Fourier transform infrared (FT-IR) spectrometer and nuclear magnetic resonance spectra (NMR), including the determination of procoagulant activity in vitro. The average molecular weight (Mw) of the polysaccharides was 153,800, 8312, 111,700, 3766 and 96,680 g/mol, respectively. Coagulation assays indicated that ADPs-1b, ADPs-2, ADPs-3a and ADPs-3b had procoagulant activities. ADPs-1b exerted the procoagulant activities through intrinsic pathway, extrinsic pathway and increased the content of FIB in vitro. ADPs-2 exerted the procoagulant activities through intrinsic pathway and extrinsic pathway. ADPs-3a had procoagulant activities and the activity was associated with the intrinsic pathway and increased the content of FIB. ADPs-3b exerted the activities through extrinsic pathway and increased the content of FIB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app