Add like
Add dislike
Add to saved papers

Insights from the analysis of predicted Rv0679c protein peptide from Mycobacterium tuberculosis with Toll like Receptors in host.

Peptides of Rv0679c a membrane protein of the cell envelope (16.6 KDa) of Mycobacterium tuberculosis (M. tb), inhibited entry of live bacilli into epithelial (A549) and macrophage (U937) cell lines in vitro, suggesting a possible role in invasion. Receptors associated with Rv0679c antigen entry into cell lines were not characterized. We are reporting that Rv0679c peptides could bind to Toll like receptors (TLRs), the principal class of pathogen recognition receptors on host cells (PRR) by docking studies. Peptide structures were predicted using PEP FOLD and docking of truncated peptides with TLR's was performed using Cluspro 2.0. Docked complexes were analyzed using Swiss-PDB Viewer. Nine peptides of Rv0679c protein assessed were able to bind to TLR2-1 and TLR 4-MD2; however the binding energy was better with TLR 4-MD2. Peptide 30985 (-866.4 kcal/mol) has better binding energy with TLR2-1, in contrast peptide 30982 showed a better binding energy to TLR 4-MD2 dimer with a score of -1291.7 kcal/mol. Interactive residue analysis revealed that GLU 173 and SER 454 of TLR 1; ARG 447 and ARG 486 of TLR2; ARG 264 of TLR 4 and SER 120, LYS 122 and GLU 92 of MD2 region are predominant residues interacting with peptides of Rv0679c protein. Our study suggests that predominant residues and receptors of TLR2 and TLR4 are important for Rv0679c protein binding, which could further lead to invasion of M. tb into the host cell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app