Add like
Add dislike
Add to saved papers

Montelukast inhibits oxidized low-density lipoproteins (ox-LDL) induced vascular endothelial attachment: An implication for the treatment of atherosclerosis.

Recruitment of monocytes to endothelial cells is important during early stages of atherosclerosis development, which is activated in response to a number of inflammatory stimuli, including oxidized low-density lipoprotein (ox-LDL). Montelukast is a licensed drug approved by the Food and Drug Administration (FDA) and clinically used for the treatment of asthma by reducing the eosinophilic inflammation in the airway. Little information regarding the effects of Montelukast on endothelial inflammation has been reported before. In the current study, we found that Montelukast markedly reduced ox-LDL-induced monocyte adhesion to human umbilical vein endothelial cells. In addition, the inhibitory mechanism of Montelukast was associated with suppression of adhesion molecule expression, including VCAM-1 and E-selectin. Mechanistically, ERK5 mediated expression of the transcriptional factor KLF2 was found to be involved in the anti-inflammation effects of Montelukast against ox-LDL induced endothelial inflammation. Results indicate that Montelukast plays a protective role in the early stages of atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app