Add like
Add dislike
Add to saved papers

Anti-Fibrosis Effect of Relaxin and Spironolactone Combined on Isoprenaline-Induced Myocardial Fibrosis in Rats via Inhibition of Endothelial-Mesenchymal Transition.

BACKGROUND: The effect of relaxin and spironolactone combined on myocardial fibrosis has not been reported. Thus, we investigated the effect of the combined therapy on isoprenaline-induced myocardial fibrosis and the mechanism.

METHODS: Rats were injected subcutaneously with isoprenaline to induce myocardial fibrosis and underwent subcutaneous injection with relaxin (2 µg·kg-1·d-1) and given a gavage of spironolactone (30 mg·kg-1·d-1) alone or combined for 14 days. In vitro, the endothelial-mesenchymal transition was induced with transforming growth factor β (TGF-β) in human umbilical vein endothelial cells (HUVECs) pretreated with relaxin, 200 ng/ml, and/or spironolactone, 1uM.

RESULTS: Relaxin and spironolactone used alone or combined improved cardiac function and decreased cardiac weight indices; reduced fibrous tissue proliferation; reduced levels of type I and III collagen; decreased the expression of α-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1), and increased the expression of cluster of differentiation-31 (CD31) in rats with isoprenaline-induced myocardial fibrosis. In vitro, compared with TGF-β treatment, relaxin and spironolactone used alone or combined with TGF-β decreased cell mobility, α-SMA and vimentin levels but increased vascular endothelial cadherin (VE-cadherin) and endothelial CD31levels. Especially, combined therapy had more remarkable effect than relaxin and spironolactone used alone both in vitro and in vivo.

CONCLUSION: Relaxin and spironolactone combined affected isoprenaline-induced myocardial fibrosis in rats that the mechanism might be inhibition of the cardiac endothelial-mesenchymal transition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app