Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness.

Biomacromolecules 2017 April 11
The extracellular matrix is an environment rich with structural, mechanical, and molecular signals that can impact cell biology. Traditional approaches in hydrogel biomaterial design often rely on modifying the concentration of cross-linking groups to adjust mechanical properties. However, this strategy provides limited capacity to control additional important parameters in 3D cell culture such as microstructure and molecular diffusivity. Here we describe the use of multifunctional hyperbranched polyglycerols (HPGs) to manipulate the mechanical properties of polyethylene glycol (PEG) hydrogels while not altering biomolecule diffusion. This strategy also provides the ability to separately regulate spatial and temporal distribution of biomolecules tethered within the hydrogel. The functionalized HPGs used here can also react through a copper-free click chemistry, allowing for the encapsulation of cells and covalently tethered biomolecules within the hydrogel. Because of the hyperbranched architecture and unique properties of HPGs, their addition into PEG hydrogels affords opportunities to locally alter hydrogel cross-linking density with minimal effects on global network architecture. Additionally, photocoupling chemistry allows micropatterning of bioactive cues within the three-dimensional gel structure. This approach therefore enables us to tailor mechanical and diffusive properties independently while further allowing for local modulation of biomolecular cues to create increasingly complex cell culture microenvironments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app