Add like
Add dislike
Add to saved papers

Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance.

The AP2/ERF family is a plant-specific transcription factor family whose members have been associated with various developmental processes and stress tolerance. Here, we functionally characterized the drought-inducible OsERF48, a group Ib member of the rice ERF family with four conserved motifs, CMI-1, -2, -3 and -4. A transactivation assay in yeast revealed that the C-terminal CMI-1 motif was essential for OsERF48 transcriptional activity. When OsERF48 was overexpressed in an either a root-specific (ROXO s ERF 48 ) or whole-body (OXO s ERF 48 ) manner, transgenic plants showed a longer and denser root phenotype compared to the nontransgenic (NT) controls. When plants were grown on a 40% polyethylene glycol-infused medium under in vitro drought conditions, ROXO s ERF 48 plants showed a more vigorous root growth than OXO s ERF 48 and NT plants. In addition, the ROXO s ERF 48 plants exhibited higher grain yield than OXO s ERF 48 and NT plants under field-drought conditions. We constructed a putative OsERF48 regulatory network by cross-referencing ROXO s ERF 48 root-specific RNA-seq data with a co-expression network database, from which we inferred the involvement of 20 drought-related genes in OsERF48-mediated responses. These included genes annotated as being involved in stress signalling, carbohydrate metabolism, cell-wall proteins and drought responses. They included, OsCML16, a key gene in calcium signalling during abiotic stress, which was shown to be a direct target of OsERF48 by chromatin immunoprecipitation-qPCR analysis and a transient protoplast expression assay. Our results demonstrated that OsERF48 regulates OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app