Add like
Add dislike
Add to saved papers

A genetic female mouse model with congenital genitourinary anomalies and adult stages of urinary incontinence.

AIMS: To characterize the urinary incontinence observed in adult Gli2+/ - ; Gli3Δ699/+ female mice and identify the defects underlying the condition.

METHODS: Gli2+/ - and Gli3Δ699/+ mice were crossed to generate: wild-type, mutant Gli2 (Gli2+/- ), mutant Gli3 (Gli3Δ699/+ ), and double mutant (Gli2+/- ; Gli3Δ699/+ ) female mice, verified via Polymerase Chain Reactions. Bladder functional studies including cystometrogram (CMG), leak point pressure (LPP), and voiding testing were performed on adult female mice. Female bladders and urethras were also analyzed via ink injection and histological assays.

RESULTS: CMG tracing showed no signal corresponding to the filling of the Gli2+/- ; Gli3Δ699/+ bladders. LPP were significantly reduced in Gli2+/- ; Gli3Δ699/+ mice compared to wild-type mice. CMG studies revealed a decrease in peak micturition pressure values in Gli2+/- ; Gli3Δ699/+ mice compared with all other groups. No significant differences between mutant and wild-type mice were detected in urinary output. Histological analyses revealed Gli2+/- ; Gli3Δ699/+ mice exhibited a widened urethra and a decrease in smooth muscle layer thickness in the bladder outlet and urethra, with increased mucosal folding.

CONCLUSIONS: Gli2+/ - ; Gli3Δ699/+ adult female mice display persistent urinary incontinence due to the malformation of the bladder outlet and urethra. This presents a consistent and reliable genetic mouse model for female urinary incontinence and alludes to the key role of genetic factors involved in the condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app