Add like
Add dislike
Add to saved papers

Parallel radiofrequency transmission at 3 tesla to improve safety in bilateral implanted wires in a heterogeneous model.

PURPOSE: Elongated implanted conductors can interact with the radiofrequency (RF) transmission field during MRI, posing safety concerns of excessive heating in patients with deep brain stimulators. A technique using parallel RF transmission (pTx) is evaluated on an anthropomorphic heterogeneous model with bilateral and unilateral curved wires.

METHODS: Amplitude and phase were optimized by simulation to minimize heating surrounding the implanted wires and to minimize B1+ inhomogeneity for four-channel and eight-channel pTx in a heterogeneous model. MRI experiments were conducted in an equivalent test phantom created from a common digital mesh file.

RESULTS: In four-channel pTx, maximum local specific absorption rate (SAR) was reduced in both unilateral and bilateral wires by 47% and 59%, respectively, but with compromised B1+ homogeneity. Optimized eight-channel pTx substantially reduced local SAR compared with birdcage coil RF excitation in both unilateral and bilateral wires (reduction of maximum local SAR of 79% and 87%, respectively). B1+ inhomogeneity was limited to 17% and 26%, respectively. Experimental validation with four-channel pTx showed 80% and 92% temperature reduction at the tips of wire 1 and wire 2, respectively.

CONCLUSION: This pTx approach yields promising reductions in local SAR at the tips of unilateral and bilateral implanted wires while maintaining image quality in simulation and experiment. Magn Reson Med 78:2408-2415, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app