JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Role of Phospholipid Flux during Milk Secretion in the Mammary Gland.

Lipids are a complex group of chemical compounds that are a significant component of the human diet and are one of the main constituents of milk. In mammals, lipids are produced in the milk-secreting cells in the form of milk fat globules. The chemical properties of these compounds necessitate developing separate processes for effective management of non-polar substances in the polar environment of the cell, not only during their biosynthesis and accumulation in the cell interior and secretion of intracytoplasmic lipid droplets outside the cell, but also during digestion in the offspring. Phospholipids play an important role in these processes. Their characteristic properties make them indispensable for the secretion of milk fat as well as other milk components. This review investigates how these processes depend on the coordinated flux and availability of phospholipids and how the relationship between the surface area (phospholipids) and volume (neutral lipids) of the cytoplasmic lipid droplets must be in biosynthetic balance. The structure formed as a result (i.e. a milk fat globule) is therefore a result of specified structural limitations inside the cell, whose overcoming enables the coordinated secretion of milk components. This structure and its composition also reflects the nutritional demands of the developing infant organism as a result of evolutionary adaptation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app