JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Cross-education of muscular strength is facilitated by homeostatic plasticity.

PURPOSE: We examined the effect of priming the ipsilateral motor cortex (M1) using anodal transcranial direct current stimulation (tDCS) prior to a single bout of strength training on the cross-transfer of strength and corticospinal excitability and inhibition of the ipsilateral M1.

METHODS: In a randomized double-blinded cross-over design, changes in strength and indices of corticospinal plasticity were analysed in 13 adults who were exposed to 20 min of ipsilateral anodal and sham tDCS (applied to the ipsilateral M1 to the training arm) followed by a single strength training session of the right Biceps Brachii only.

RESULTS: The induction of homeostatic plasticity via anodal tDCS priming, significantly increased strength of the untrained left Biceps Brachii (12%) compared to sham tDCS (2%), increased corticospinal excitability (12-33%) and cross-activation (25%) when ipsilateral anodal tDCS was applied to the right M1 prior to a single session of strength training. Interestingly, ipsilateral sham tDCS and strength training resulted in an average increase in MEP amplitude of 2-32%.

CONCLUSION: The novel findings of this study include: priming the ipsilateral M1 via anodal tDCS prior to a single bout of strength training augments the cross-transfer of strength which is manifested by an increase in corticospinal excitability and cross-activation. These findings provide insight into how priming methods that induce homeostatic plasticity may be used to enhance the cross-education phenomenon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app