Add like
Add dislike
Add to saved papers

A novel retina-based human identification algorithm based on geometrical shape features using a hierarchical matching structure.

BACKGROUND AND OBJECTIVES: Retinal image is one of the most secure biometrics which is widely used in human identification application. This paper represents a rotation and translation-invariant human identification algorithm based on a new definition of geometrical shape features of the retinal image using a hierarchical matching structure.

METHODS: In this algorithm, the retinal images are represented by regions which are surrounded by blood vessels that are named Surrounded Regions (SRs). A perfect set of region-based and boundary-based features are defined on the SRs. In the boundary-based features, by defining corner points of the SR, novel features such as angle of SR corner, centroid distance and weighted corner angle are defined which they can describe well the variation rate of boundary and geometry of the SR. To match the SR of a query with enrolled SR in database, the extracted features in a hierarchical structure from simpler features through more complex features are applied to filter the enrolled SRs in the database for search space reduction. At last, the matched candidate SRs with the query SRs determine the identification or rejection of query image by proposed decision making scenario. In this scenario, the identification is carried out when at least two SRs of the query are matched with two SRs of an individual in the database.

RESULTS: The proposed algorithm is evaluated on STARE and DRIVE retinal image databases in six different experiments and is achieved an accuracy rate of 100% and an average processing time of 3.216sec and 3.225sec, respectively. The reported results demonstrate the efficiency of our proposed algorithm in the eye-movement condition.

CONCLUSION: In our work, by defining the SR-based features and employing a hierarchical matching structure, the computational complexity of matching step is reduced and also the identification performance is improved. Moreover, the proposed algorithm overcomes the problem of natural movements of the head and eye during the capturing process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app