Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The Q-Cycle Mechanism of the bc 1 Complex: A Biologist's Perspective on Atomistic Studies.

The Q-cycle mechanism of the bc1 complex is now well enough understood to allow application of advanced computational approaches to the study of atomistic processes. In addition to the main features of the mechanism, these include control and gating of the bifurcated reaction at the Qo -site, through which generation of damaging reactive oxygen species is minimized. We report a new molecular dynamics model of the Rhodobacter sphaeroides bc1 complex implemented in a native membrane, and constructed so as to eliminate blemishes apparent in earlier Rhodobacter models. Unconstrained MD simulations after equilibration with ubiquinol and ubiquinone respectively at Qo - and Qi -sites show that substrate binding configurations at both sites are different in important details from earlier models. We also demonstrate a new Qo -site intermediate, formed in the sub-ms time range, in which semiquinone remains complexed with the reduced iron sulfur protein. We discuss this, and a spring-loaded mechanism for modulating interactions of the iron sulfur protein with occupants of the Qo -site, in the context of control and gating roles. Such atomistic features of the mechanism can usefully be explored through simulation, but we stress the importance of constraints from physical chemistry and biology, both in setting up a simulation and in interpreting results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app