Add like
Add dislike
Add to saved papers

Iterative compensation of nonlinear error of heterodyne interferometer.

Optics Express 2017 Februrary 21
In order to compensate the nonlinear error of a heterodyne interferometer caused by both frequency mixing and phase demodulating electronics in real time, a novel iterative algorithm with a digital lock-in phase demodulator is proposed in this paper. By using iterative translating and scaling transforms, the phase diagram of the two output signals from phase demodulator is corrected from an ellipse with center offset to a circle at origin. As a result, the correct phase can be obtained and the nonlinear error is compensated. The nonlinear error in heterodyne interferometer is analyzed, the digital lock-in phase demodulator is designed and the iterative compensation algorithm is presented. Simulation and displacement measurement experiments were performed to verify the effectiveness of the proposed method. The experimental results demonstrated that proposed method is able to reduce the nonlinear error obviously and realize nanometer displacement measurement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app