Add like
Add dislike
Add to saved papers

Enhancing ultraviolet spontaneous emission with a designed quantum vacuum.

Optics Express 2017 Februrary 21
We determine how to alter the properties of the quantum vacuum at ultraviolet wavelengths to simultaneously enhance the spontaneous transition rates and the far field detection rate of quantum emitters. We find the response of several complex nanostructures in the 200 - 400 nm range, where many organic molecules have fluorescent responses, using an analytic decomposition of the electromagnetic response in terms of continuous spectra of plane waves and discrete sets of modes. Coupling a nanorod with an aluminum substrate gives decay rates up to 2.7 × 10<sup>3</sup> times larger than the decay rate in vacuum and enhancements of 824 for the far field emission into the entire upper semi-space and of 2.04 × 10<sup>3</sup> for emission within a cone with a 60° semi-angle. This effect is due to both an enhancement of the field at the emitter's position and a reshaping of the radiation patterns near mode resonances and cannot be obtained by replacing the aluminum substrate with a second nanoparticle or with a fused silica substrate. These large decay rates and far field enhancement factors will be very useful in the detection of fluorescence signals, as these resonances can be shifted by changing the dimensions of the nanorod. Moreover, these nanostructures have potential for nano-lasing because the Q factors of these resonances can reach 107.9, higher than the Q factors observed in nano-lasers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app