Add like
Add dislike
Add to saved papers

Lookup-table-based inverse model for mapping oxygen concentration of cutaneous microvessels using hyperspectral imaging.

Optics Express 2017 Februrary 21
Hyperspectral imaging combining with skin optical clearing technique provides a possible way to non-invasively monitor hemodynamics of cutaneous microvessels. In order to estimate microvascular blood oxygen saturation, in this work, a lookup-table-based inverse model was developed to extract the microvascular optical and physiological properties using hyperspectral analysis. This approach showed a higher fitting degree than currently existing hyperspectral analysis methods (i.e. multiple linear regression and non-negative least square fit) in estimating blood oxygen saturation. Hypoxic stimulation experiment showed that calculated results were in accordance with physiological changes, and the relative changes of estimated oxygen saturation indicated this method appeared to be more sensitive to blood oxygen fluctuation. And a simulated blood model was used for verification here, indicating this method also showed a good accuracy in determining oxygen saturation from the simulated spectra.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app