Add like
Add dislike
Add to saved papers

Self-assembling study of sarcolipin and its mutants in multiple molecular dynamic simulations.

Proteins 2017 June
The Sarcolipin (SLN) is a single trans-membrane protein that can self-assembly to dimer and oligomer for playing importantphysiological function. In this work, we addressed the dimerization of wild type SLN (wSLN) and its mutants (mSLNs) - I17A and I20A, using both coarse-grained (CG) and atomistic (AT) molecular dynamics (MD) simulations. Our results demonstrated that wSLN homodimer assembled as a left-handed helical complex, while mSLNs heterodimers assembled as right-handed complexes. Analysis of residue-residue contacts map indicated that isoleucine (Ile)-leucione (Leu) zipper domain played an important role in dimerization. The potential of mean force (PMF) demonstrated that wSLN homodimer was more stable than mSLNs heterodimers. Meanwhile, the mSLNs heterodimers preferred right-handed rather than left-handed helix. AT-MD simulations for wSLN and mSLNs were also in line with CG-MD simulations. These results provided the insights for understanding the mechanisms of SLNs self-assembling. Proteins 2017; 85:1065-1077. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app