JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Numerical Investigation of Vasospasm Detection by Extracranial Blood Velocity Ratios.

BACKGROUND: Early diagnosis of vasospasm following subarachnoid hemorrhage can prevent cerebral ischemia and improve neurological outcomes. This study numerically evaluates the relevance of extracranial blood velocity indices to detect vasospasm.

METHODS: A numerical model of cerebral blood flow was used to evaluate the hemodynamics associated with anterior and posterior vasospasm under normal and impaired cerebral autoregulation conditions. Extracranial blood velocities at the carotid and vertebral arteries and their ratios between ipsilateral and contralateral, anterior and posterior, and downstream and upstream arteries were monitored during vasospasm progression.

RESULTS: For current clinical indices that track blood velocities at vasospastic arterial segments using transcranial Doppler (TCD), we observed that velocities increased initially and then decreased with vasospasm progression. This nonmonotonic behavior can lead to false-negative decisions in moderate to severe vasospasm. Alternatively, volumetric flow decreased monotonically at the affected arteries, leading to blood velocities upstream of the vasospastic artery also decreasing monotonically. Based on this principle, we demonstrate that velocity ratios between the carotid and vertebral arteries may better identify moderate to severe vasospasm and improve sensitivity and specificity of vasospasm detection.

CONCLUSION: The velocity indices proposed in this study may enable new or improved noninvasive diagnosis of vasospasm using extracranial Doppler ultrasound. Compared to current clinical indices, the new indices may improve the handling of (1) scenarios of severe vasospasm or impaired cerebral autoregulation, (2) systemic changes in blood pressure and cardiac output, (3) vasospasm occurring in arteries distal to the cerebral circle region, and (4) cases with insufficient acoustic bone window for TCD. The results provide a concrete basis for future clinical evaluation of extracranial indices for vasospasm detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app