JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Photoinduced Stark Effects and Mechanism of Ion Displacement in Perovskite Solar Cell Materials.

ACS Nano 2017 March 29
Organometallic halide perovskites (OMHPs) have recently emerged as a promising class of materials in photovoltaic technology. Here, we present an in-depth investigation of the physics in these systems by measuring the photoinduced absorption (PIA) in OMHPs as a function of materials composition, excitation wavelength, and modulation frequency. We report a photoinduced Stark effect that depends on the excitation wavelength and on the dipole strength of the monovalent cations in the A position of the ABX3 perovskite. The results presented are corroborated by density functional theory calculations and provide fundamental information about the photoinduced local electric field change under blue and red excitation as well as insights into the mechanism of light-induced ion displacement in OMHPs. For optimized perovskite solar cell devices beyond 19% efficiency, we show that excess thermalization energy of blue photons plays a role in overcoming the activation energy for ion diffusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app