Add like
Add dislike
Add to saved papers

Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells.

Oncogenesis 2017 Februrary 28
Fatty acid synthase (FASN), the key enzyme for endogenous synthesis of fatty acids, is overexpressed and hyperactivated in a biologically aggressive subset of sex steroid-related tumors, including breast carcinomas. Using pharmacological and genetic approaches, we assessed the molecular relationship between FASN signaling and estrogen receptor alpha (ERα) signaling in breast cancer. The small compound C75, a synthetic slow-binding inhibitor of FASN activity, induced a dramatic augmentation of estradiol (E2)-stimulated, ERα-driven transcription. FASN and ERα were both necessary for the synergistic activation of ERα transcriptional activity that occurred following co-exposure to C75 and E2: first, knockdown of FASN expression using RNAi (RNA interference) drastically lowered (>100 fold) the amount of E2 required for optimal activation of ERα-mediated transcriptional activity; second, FASN blockade synergistically increased E2-stimulated ERα-mediated transcriptional activity in ERα-negative breast cancer cells stably transfected with ERα, but not in ERα-negative parental cells. Non-genomic, E2-regulated cross-talk between the ERα and MAPK pathways participated in these phenomena. Thus, treatment with the pure antiestrogen ICI 182 780 or the potent and specific inhibitor of MEK/ERK, U0126, was sufficient to abolish the synergistic nature of the interaction between FASN blockade and E2-stimulated ERα transactivation. FASN inhibition suppressed E2-stimulated breast cancer cell proliferation and anchorage-independent colony formation while promoting the reduction of ERα protein. FASN blockade resulted in the increased expression and nuclear accumulation of the cyclin-dependent kinase inhibitors p21(WAF1/CIP1) and p27(Kip1), two critical mediators of the therapeutic effects of antiestrogen in breast cancer, while inactivating AKT, a key mediator of E2-promoted anchorage-independent growth. The ability of FASN to regulate E2/ERα signaling may represent a promising strategy for anticancer treatment involving a new generation of FASN inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app