Add like
Add dislike
Add to saved papers

Radicol, a Novel Trinorguaiane-Type Sesquiterpene, Induces Temozolomide-Resistant Glioma Cell Apoptosis via ER Stress and Akt/mTOR Pathway Blockade.

Glioblastoma multiforme (GBM) is the most frequent, lethal and aggressive tumour of the central nervous system (CNS) in adults. Multidrug resistance (MDR) results in undesirable prognosis during GBM chemotherapy. In this study, we determined that Radicol (RAD), a novel trinorguaiane-type sesquiterpene originally isolated from the root of Dictamnus radicis Cortex, exhibited potently cytotoxic effect on temozolomide (TMZ)-resistant GBM cell lines in a dose-dependent manner. Radicol-induced apoptosis was confirmed with Hoechst 33342/propidium iodide and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end-labelling (TUNEL) staining. Studies investigating the mechanism revealed that RAD triggered an attenuation of protein disulphide isomerase (PDI) and induced the unmitigated unfolded protein response (UPR) and lethal endoplasmic reticulum (ER) stress. Simultaneously, we further demonstrated that RAD suppressed the activation of Akt/mTOR/p70S6K phosphorylation by up-regulating the induction of glycogen synthase kinase-3β (GSK-3β). These results established a link between RAD-induced ER stress and inhibition of the Akt/mTOR/p70S6K pathway, and the attenuation of PDI and activation of GSK-3β might be the synergistic target of antineoplastic effects during RAD-induced apoptosis. These findings suggested that RAD, possessing multiple cytotoxicity targets, low molecular weight and high lipid solubility, could be a promising agent for the treatment of malignant gliomas. Copyright © 2017 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app