Add like
Add dislike
Add to saved papers

Dihydromyricetin Reduces TGF-β Via P53 Activation-dependent Mechanism in Hepatocellular Carcinoma HepG2 Cells.

Natural antineoplastic drug development is crucial to treatment of clinical oncology. Dihydromyricetin, a bioactive flavonoid compound was extracted from the stems and leaves of Ampelopsis grossedentata. It exhibited anticancer activity and induced apoptosis in human hepatocellular carcinoma cells according to our previous studies. In this study, we demonstrated that DHM could significantly inhibit proliferation and induce apoptosis in HepG2 cells with MTT and Flow Cytometry methods. It is very interesting that we found DHM could regulate TGF-β signal pathway and which has a crosstalk with P53, Smad3 and P-Smad2/3 proteins. Meanwhile, we confirmed that DHM showed antitumor activity by regulating the activation of the p53-dependent pathways (MDM2, P-MDM2, BAX and Bcl-2). These findings defined and supported a novel mechanism that DHM could induce cell apoptosis by reducing TGF-β via p53 signal pathway in HepG2 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app