Add like
Add dislike
Add to saved papers

Optimization of highly sensitive YAG:Cr 3+ ,Nd 3+ nanocrystal-based luminescent thermometer operating in an optical window of biological tissues.

Luminescent and temperature sensitive properties of YAG:Cr3+ ,Nd3+ nanocrystals were analyzed as a function of temperature, nanoparticle size, and excitation wavelength. Due to numerous temperature-dependent phenomena (e.g. Boltzmann population, thermal quenching, and inter-ion energy transfer) occurring in this phosphor, four different thermometer definitions were evaluated with the target to achieve a high sensitivity and broad temperature sensitivity range. Using a Cr3+ to Nd3+ emission intensity ratio, the highest 3.48% K-1 sensitivity was obtained in the physiological temperature range. However, high sensitivity was compromised by a narrow sensitivity range or vice versa. The knowledge of the excitation and temperature susceptibility mechanisms enabled wise selection of the spectral features found in luminescence spectra for a temperature readout, which enabled the preservation of relatively high temperature sensitivity (>1.2% K-1 max) and extended the temperature sensitivity range from 100 K to 850 K. The size of the nanophosphors had negligible impact on the performance of the studied materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app