Add like
Add dislike
Add to saved papers

Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations.

ACS Photonics 2017 Februrary 16
Surface-enhanced Raman scattering (SERS) has become a widely used spectroscopic technique for chemical identification, providing unbeaten sensitivity down to the single-molecule level. The amplification of the optical near field produced by collective electron excitations -plasmons- in nanostructured metal surfaces gives rise to a dramatic increase by many orders of magnitude in the Raman scattering intensities from neighboring molecules. This effect strongly depends on the detailed geometry and composition of the plasmon-supporting metallic structures. However, the search for optimized SERS substrates has largely relied on empirical data, due in part to the complexity of the structures, whose simulation becomes prohibitively demanding. In this work, we use state-of-the-art electromagnetic computation techniques to produce predictive simulations for a wide range of nanoparticle-based SERS substrates, including realistic configurations consisting of random arrangements of hundreds of nanoparticles with various morphologies. This allows us to derive rules of thumb for the influence of particle anisotropy and substrate coverage on the obtained SERS enhancement and optimum spectral ranges of operation. Our results provide a solid background to understand and design optimized SERS substrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app