Add like
Add dislike
Add to saved papers

Sex and Exercise Intensity Do Not Influence Oxygen Uptake Kinetics in Submaximal Swimming.

The aim of this study was to compare the oxygen uptake ([Formula: see text]) kinetics in front crawl between male and female swimmers at moderate and heavy intensity. We hypothesized that the time constant for the primary phase [Formula: see text] kinetics was faster in men than in women, for both intensities. Nineteen well trained swimmers (8 females mean ± SD; age 17.9 ± 3.5 years; mass 55.2 ± 3.6 kg; height 1.66 ± 0.05 m and 11 male 21.9 ± 2.8 years; 78.2 ± 11.1 kg; 1.81 ± 0.08 m) performed a discontinuous maximal incremental test and two 600-m square wave transitions for both moderate and heavy intensities to determine the [Formula: see text] kinetics parameters using mono- and bi-exponential models, respectively. All the tests involved breath-by-breath analysis of front crawl swimming using a swimming snorkel. The maximal oxygen uptake [Formula: see text] was higher in men than in women [4,492 ± 585 ml·min(-1) and 57.7 ± 4.4 ml·kg(-1)·min(-1) vs. 2,752.4 ± 187.9 ml·min(-1) (p ≤ 0.001) and 50.0 ± 5.7 ml·kg(-1)·min(-1)(p = 0.007), respectively]. Similarly, the absolute amplitude of the primary component was higher in men for both intensities (moderate: 1,736 ± 164 vs. 1,121 ± 149 ml·min(-1); heavy: 2,948 ± 227 vs. 1,927 ± 243 ml·min(-1), p ≤ 0.001, for males and females, respectively). However, the time constant of the primary component (τp) was not influenced by sex (p = 0.527) or swimming intensity (p = 0.804) (moderate: 15.1 ± 5.6 vs. 14.4 ± 5.1 s; heavy: 13.5 ± 3.3 vs. 16.0 ± 4.5 s, for females and males, respectively). The slow component in the heavy domain was not significantly different between female and male swimmers (3.2 ± 2.4 vs. 3.8 ± 1.0 ml·kg(-1)·min(-1), p = 0.476). Overall, only the absolute amplitude of the primary component was higher in men, while the other [Formula: see text] kinetics parameters were similar between female and male swimmers at both moderate and heavy intensities. The mechanisms underlying these similarities remain unclear.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app