Add like
Add dislike
Add to saved papers

Effect of Ageratina adenophora invasion on the composition and diversity of soil microbiome.

In the present study, high throughput 16S rRNA gene sequencing was used to investigate soil invaded by the aggressive weed Ageratina adenophora to determine its effect on the species composition, distribution, and biodiversity of the bacterial communities. Soil samples from 12 micro-sites containing a monoculture of A. adenophora plants, mixtures of A. adenophora and different native plant species, and native species alone were studied. We found that the invasion of this weed resulted in a selection of bacteria belonging to phyla Acidobacteria and Verrucomicrobia and the lack of bacteria belonging to phyla Actinobacteria and Planctomycetes, but did not affect significantly the percentage abundances of members of other phyla. A similar bacterial population selection was also observed at genus or subgroup levels. The NO3 - -N level was an important factor affecting soil bacterial communities and contributed to the dominance of A. adenophora. However, the numbers of total bacterial species, and the diversity and structure of soil bacterial microbiome did not (P > 0.05) change significantly following invasion by this weed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app