Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

EBV early lytic protein BFRF1 alters emerin distribution and post-translational modification.

Virus Research 2017 March 16
The nuclear envelope (NE), a structural element of fundamental importance for the cell, is the first barrier that meets a virus in the early stages of viral maturation. Therefore, in order to allow the passage of nucleocapsids, viruses are known to modulate the architecture of the nuclear membrane to permit a proficient viral infection. Epstein-Barr Virus (EBV), a pathogen from Herpesvirus family, possesses two well conserved proteins, BFRF1 and BFLF2, which together form the heterodimeric nuclear egress complex (NEC) that is involved in the early steps of nuclear egress. Here we show that EBV replication causes the delocalization of emerin, a cellular LEM-domain protein normally distributed on the nuclear rim. We also demonstrate that the early lytic protein BFRF1 is responsible for emerin delocalization. Expression of BFRF1 alone or in combination with BFLF2 induces emerin hyperphosphorylation. Altogether, these results suggest a novel mechanism by which EBV exploits the cellular machinery for nucleocapsid egress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app