Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

High rates of intestinal bicarbonate secretion in seawater tilapia (Oreochromis mossambicus).

Osmoregulation in fish is a complex process that requires the orchestrated cooperation of many tissues. In fish facing hyperosmotic environments, the intestinal absorption of some monovalent ions and the secretion of bicarbonate are key processes to favor water absorption. In the present study, we showed that bicarbonate levels in the intestinal fluid are several fold higher in seawater than in freshwater acclimated tilapia (Oreochromis mossambicus). In addition, we analyzed gene expression of the main molecular mechanisms involved in HCO3 - movements i.e. slc26a6, slc26a3, slc4a4 and v-type H-ATPase sub C in the intestine of tilapia acclimated to both seawater and freshwater. Our results show an anterior/posterior functional regionalization of the intestine in tilapia in terms of expression patterns, which is affected by environmental salinity mostly in the anterior and mid intestine. Analysis of bicarbonate secretion using pH-Stat in tissues mounted in Ussing chambers reveals high rates of bicarbonate secretion in tilapia acclimated to seawater from anterior intestine to rectum ranging between ~900 and ~1700nmolHCO3 - cm-2 h-1 . However, a relationship between the expression of slc26a6, slc26a3, slc4a4 and the rate of bicarbonate secretion seems to be compromised in the rectum. In this region, the low expression of the bicarbonate transporters could not explain the high bicarbonate secretion rates here described. However, we postulate that the elevated v-type H-ATPase mRNA expression in the rectum could be involved in this process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app