Add like
Add dislike
Add to saved papers

Evaluating Nanoparticle Binding to Blood Compartment Immune Cells in High-Throughput with Flow Cytometry.

Nanoparticles are increasingly being utilized for in vivo applications, where they are implemented as carriers for drugs, contrast agents for noninvasive medical imaging, or delivery vehicles for macromolecular agents such as DNA or proteins. However, they possess many physical and chemical properties that cause them to become rapidly recognized by the immune system as a foreign body, leading to their clearance and elimination, even before they may accumulate to critical concentrations at anatomic and cellular sites of action. The techniques described in this chapter aim to identify potential interactions of test, fluorescently tagged nano-formulations with circulating immune cells, with the goal of predicting potentially problematic formulations that may be rapidly cleared following in vivo administration. The techniques make use of flow cytometry, a method commonly used in immunology to phenotype and identify immune cell subtypes based on their expression of signature surface marker profiles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app