Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tunable and purified luminescence via energy transfer and delamination of LRH (R=Tb, Y) composites with 8-hydroxypyrene-1,3,6-trisulphonate.

This work demonstrates tunable and purified luminescence via one-step delamination of HPTS/OS-LRH composites (HPTS is trisodium 8-hydroxy-pyrene-1,3,6-trisulphonate, OS is sodium salt of 1-octane sulfonic acid, LRH is layered rare-earth hydroxide, R=Tb, Y) along with energy transfer. The HPTSxOS1-x-LTbyY1-yH composites presented varied luminescence behavior depending on their physical state. In solid state, dual-color luminescence was observed: blue-dominant emissions (437nm) for HPTSxOS1-x-LTbH, and blue- (437nm) to green-dominant (516nm) luminescence for HPTS0.02OS0.98-LTbyY1-yH. In delaminated state in famamide, purified luminescence was present: pure blue emission (440nm) for HPTSxOS1-x-LTbH and HPTS0.02OS0.98-LTbyY1-yH (y≥0.5), while pure bluish-green emission (498nm) for HPTS0.02OS0.98-LTbyY1-yH (y≤0.3). Both the delamination of the composites and energy transfer from layer Tb(3+) to HPTS contributed to the blue luminescence. The intriguing energy transfer process between photoactive inorganic hosts and organic guests can be utilized to fabricate hybrid materials with superior luminescence property.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app