Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Role of plant volatiles and hetero-specific pheromone components in the wind tunnel response of male Grapholita molesta (Lepidoptera: Tortricidae) to modified sex pheromone blends.

Female Grapholita molesta (Busck) release a pheromone blend composed of two stereoisomeric acetates (Z8-12:Ac and E8-12:Ac), which in a 100:6 ratio stimulate maximum conspecific male approach. Z8-12:OH is described as a third pheromone component that increases responses to the acetate blend. Departures from the optimal pheromone blend ratio, or too high or low pheromone doses of the optimal blend ratio, result in lower male response. In a previous study, we show that plant volatiles synergize male response to a suboptimal-low pheromone concentration. In the present study, we show that the plant blend does not synergize male response to a suboptimal-high pheromone dose. The plant blend, however, synergized male response to pheromone blends containing unnatural Z:E-acetate isomer ratios. We revisited the role of alcohols in the pheromone response of G. molesta by replacing Z8-12:OH with conspecific and heterospecific pheromone alcohols or with plant odors. Codlemone, the alcohol sex pheromone of Cydia pomonella L., E8, E10-12:OH, did supplant the role of Z8-12:OH, and so did the plant volatile blend. Dodecenol (12:OH), which has been described as a fourth pheromone component of G. molesta, also increased responses, but not as much as Z8-12:OH, codlemone or the plant blend. Our results reveal new functions for plant volatiles on moth sex pheromone response under laboratory conditions, and shed new light on the role of alcohol ingredients in the pheromone blend of G. molesta.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app