Add like
Add dislike
Add to saved papers

Multi-scale characterization of thermoresponsive dendritic elastin-like peptides.

Elastin like peptides (ELPs)-polypeptides based on the protein elastin-are used widely as thermoresponsive components in biomaterials due to the presence of a sharp soluble-to-insoluble phase change at a characteristic transition temperature (Tt). While linear ELPs have been thoroughly studied, few investigations into branched ELPs have been carried out. Using lysine amino acids as branching and terminal units with 1-3 pentameric repeats between each branch, ELP dendrimers were prepared by solid-phase peptide synthesis with molecular weights as high as 14kDa. A conformation change from random coil to β-turn upon heating through the Tt, typical of ELPs, was observed by circular dichroism spectroscopy for all peptides. The high molecular weights of these peptides enabled the use of characterization techniques typically reserved for polymers. Variable-temperature small-angle X-ray scattering measurements in dilute solution revealed an increase in size and fractal dimension upon heating, even well below the Tt. These results were corroborated by cryogenic transmission electron microscopy, which confirmed the presence of aggregates below the Tt, and micro differential scanning calorimetry, which showed a broad endothermic peak below the Tt. These results collectively indicate the presence of a pre-coacervation step in the phase transition of ELP dendrimers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app