JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

New resonator geometries for ICE decoupling of loop arrays.

RF arrays with a large number of independent coil elements are advantageous for parallel transmission (pTx) and reception at high fields. One of the main challenges in designing RF arrays is to minimize the electromagnetic (EM) coupling between the coil elements. The induced current elimination (ICE) method, which uses additional resonator elements to cancel coils' mutual EM coupling, has proven to be a simple and efficient solution for decoupling microstrip, L/C loop, monopole and dipole arrays. However, in previous embodiments of conventional ICE decoupling, the decoupling elements acted as "magnetic-walls" with low transmit fields and consequently low MR signal near them. To solve this problem, new resonator geometries including overlapped and perpendicular decoupling loops are proposed. The new geometries were analyzed theoretically and validated in EM simulations, bench tests and MR experiments. The isolation between two closely-placed loops could be improved from about -5dB to <-45dB by using the new geometries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app