JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Interactions between synaptic homeostatic mechanisms: an attempt to reconcile BCM theory, synaptic scaling, and changing excitation/inhibition balance.

Homeostatic plasticity is proposed to be mediated by synaptic changes, such as synaptic scaling and shifts in the excitation/inhibition balance. These mechanisms are thought to be separate from the Bienenstock, Cooper, Munro (BCM) learning rule, where the threshold for the induction of long-term potentiation and long-term depression slides in response to changes in activity levels. Yet, both sets of mechanisms produce a homeostatic response of a relative increase (or decrease) in strength of excitatory synapses in response to overall activity-level changes. Here we review recent studies, with a focus on in vivo experiments, to re-examine the overlap and differences between these two mechanisms and we suggest how they may interact to facilitate firing-rate homeostasis, while maintaining functional properties of neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app