Add like
Add dislike
Add to saved papers

Ex-situ catalytic pyrolysis of wastewater sewage sludge - A micro-pyrolysis study.

Concerns over increasing amounts of sewage sludge and unsustainability of current disposal methods have led to development of alternative routes for sludge management. The large amount of organics in sewage sludge makes it potential feedstock for energy or fuel production via thermochemical pathways. In this study, ex-situ catalytic pyrolysis using HZSM-5 catalyst was explored for the production of olefinic and aromatic hydrocarbons and nutrient-rich char from sewage sludge. The optimal pyrolysis and catalysis temperatures were found to be 500°C and 600°C, respectively. Carbon yields of hydrocarbons from sewage sludge were higher than for lignocellulose; yield differences were attributed to the high extractives content in the sludge. Full recovery of most inorganic elements were found in the char, which suggests that catalyst deactivation maybe alleviated through ex-situ catalytic pyrolysis. Most of the nitrogen was retained in the char while 31.80% was released as ammonia, which suggests a potential for nitrogen recycling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app