JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Scaling of dentition and prey size in the California moray (Gymnothorax mordax).

Scaling patterns of tooth morphology can provide insights on prey capture strategy and dietary patterns as species grow through ontogeny. We report the scaling of dentition and diet and how it relates to body size in the California moray, Gymnothorax mordax. We sampled lengths, widths, and curvature for teeth lining five distinct regions of the oral jaws across 21 G. mordax individuals ranging from 383 to 1110mm total length. Absolute tooth length in relation to moray size shows positive allometry only for the outer maxillary teeth, while teeth lining the inner maxilla display positive allometry in tooth base width. All other regions exhibit isometric growth in both length and width relative to moray size. Similar to previous descriptions of other moray species, the longest teeth in the oral jaws are the median intermaxillary teeth. This series of three teeth are depressible and rooted in the center of the ethmovomer, the bone that forms the roof of the rostrum. We hypothesize that caudal mobility of the median intermaxillary teeth aids in prey transport by enabling the pharyngeal jaws to remove pierced prey without requiring full abduction of the oral jaws. The predominantly isometric tooth growth in G. mordax suggests that the oral teeth grow proportionately as individuals increase in size. Stomach contents from the field suggest that G. mordax is highly piscivorous. While a strong positively allometric relationship between vertical gape and head length supports the expectation that moray increase relative prey size over ontogeny, we found no relationship between prey standard length and moray size. This suggests that while larger individuals are capable of consuming larger prey, individual G. mordax are opportunistic predators that do not specialize on prey of a specific size over ontogeny.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app