JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Shear-induced structural and thermodynamic phase transitions in micellar systems.

In this contribution a methodology to compute and classify shear-induced structural and phase transitions in surfactant/water mixtures from rheological measurements is presented. Non-linear rheological experiments, considering variations in surfactant concentration and temperature, are analyzed. In particular, the parameters of the BMP (Bautista-Manero-Puig) model, obtained from the fitting of the shear stress versus shear rate data, which are functions of surfactant concentration and temperature, allow classifying structural and phase transition boundaries. To test this methodology, we consider the analysis of the shear-induced structural and phase transitions of two micellar systems, cetyltrimethylammonium tosylate (CTAT)/water as a function of CTAT concentrations and Pluronics P103/water as a function of temperature. We found that the CTAT/water system presents a first-order phase transition at 30 ° C, and around 31 to 32 wt.% from isotropic to nematic phases, whereas a 20 wt.% Pluronics P103 aqueous micellar solution has two second-order (structural) phase transitions, one from spherical to cylindrical micelles at 33.1 ° C, and another one from cylindrical micelles to a nematic phase at 35.8 ° C and one first-order phase transition around 37.9 ° C at high shear rates near to the cloud point previously reported. The proposed methodology is also able to identify the instability regions where the wormlike micelles are broken, producing the typical shear banding behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app