Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Soluble IL6R Expressed by Myeloid Cells Reduces Tumor-Specific Th1 Differentiation and Drives Tumor Progression.

Cancer Research 2017 May 2
IL6 produced by tumor cells promotes their survival, conferring a poor prognosis in patients with cancer. IL6 also contributes to immunosuppression of CD4+ T cell-mediated antitumor effects. In this study, we focused on the impact of IL6 trans-signaling mediated by soluble IL6 receptors (sIL6R) expressed in tumor-bearing hosts. Higher levels of sIL6R circulating in blood were observed in tumor-bearing mice, whereas the systemic increase of sIL6R was not prominent in tumor-bearing mice with myeloid cell-specific conditional deletion of IL6R even when tumor cells produced sIL6R. Abundant sIL6R was released by CD11b+ cells from tumor-bearing mice but not tumor-free mice. Notably, IL6-mediated defects in Th1 differentiation, T-cell helper activity for tumor-specific CD8+ T cells, and downstream antitumor effects were rescued by myeloid-specific deletion of sIL6R. Expression of the T-cell transcription factor c-Maf was upregulated in CD4+ T cells primed in tumor-bearing mice in an IL6-dependent manner. Investigations with c-Maf loss-of-function T cells revealed that c-Maf activity was responsible for IL6/sIL6R-induced Th1 suppression and defective T-cell-mediated antitumor responses. In patients with cancer, myeloid cell-derived sIL6R was also possibly associated with Th1 suppression and c-Maf expression. Our results argued that increased expression of sIL6R from myeloid cells and subsequent c-Maf induction were adverse events for counteracting tumor-specific Th1 generation. Overall, this work provides a mechanistic rationale for sIL6R targeting to improve the efficacy of T-cell-mediated cancer immunotherapy. Cancer Res; 77(9); 2279-91. ©2017 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app