Add like
Add dislike
Add to saved papers

A novel electrochemiluminescence biosensor for the detection of microRNAs based on a DNA functionalized nitrogen doped carbon quantum dots as signal enhancers.

An ultrasensitive electrochemiluminescence (ECL) biosensor for the detection of microRNA was developed based on nicking enzymes Nb.BbvCI mediated signal amplification (NESA). First, the hairpin probe1-N-CQDs with assistant probe and microRNA (miRNA) formed Y junction structure which was cleaved with the addition of nicking enzymes Nb.BbvCI to release miRNA and assistant probe. Subsequently, the released miRNA and assistant probe can initiate the next recycling process. The generation of numerous intermediate sequences nitrogen doped carbon quantum dots-DNA (N-CQDs-DNA) can further hybridize with hairpin probe2 immobilized on GO/Au composite modified electrode surface, the initial ECL intensity was enhanced. The ECL intensity would increase with increasing concentration of the target miRNA, and the sensitivity of biosensor would be promoted because of the efficient signal amplification of the target induced cycling reaction. The novel designed biosensor provided a highly sensitive and selective detection of miRNA-21 from 10 aM to10(4) fM with a relatively low detection limit of 10 aM. Thus, our strategy has a potential application in the clinical diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app