Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stratified nanoporous PtTi alloys for hydrolysis of ammonia borane.

Stratified nanoporous PtTi (SNP-PtTi) alloys with bimodal size distributions and different components are successfully prepared by selectively dissolving Al atoms followed by removing part of Ti atoms from the PtTiAl precursor alloy. The as-made PtTi alloys have stratified nanoporous architecture with the first order ligaments around 50nm and the second order smaller ligaments around 6nm. The SNP-PtTi alloys with different bimetallic ratios exhibit much higher catalytic activity for the hydrolysis of ammonia borane than NP-Pt catalyst. The SNP-Pt65Ti35 alloy shows superior specific activity toward the hydrolytic dehydrogenation of ammonia borane compared with SNP-Pt50Ti50 and -Pt80Ti20, showing an initial turnover frequency of 51.4mol H2 (molPt)(-1)min(-1). The activation energy of SNP-Pt65Ti35 was estimated to be about 39.4kJmol(-1), which was small compared with most of the reported activation energy values in the literature. In addition, the recyclability tests indicate that the SNP-Pt65Ti35 retained 63% of the initial catalytic activity after the fifth run of hydrolysis. The lifetime of SNP-Pt65Ti35 was measured as 16,380 turnovers over 100h in the hydrolysis of ammonia borane before deactivation. The SNP-PtTi alloys show potential application prospect in the field of online hydrogen production due to the high catalytic performance and the facile preparation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app