Add like
Add dislike
Add to saved papers

Photooxidation of herbicide amitrole in the presence of fulvic acid.

Fulvic acid (Henan ChangSheng Corporation) photoinduced degradation of non-UVA-absorbing herbicide amitrole (3-amino-1,2,4-triazole, AMT) as a way for its removal from polluted water was investigated in details. It was shown that the main primary species generated by fulvic acid under UVA radiation, triplet state and hydrated electron, are not directly involved in the herbicide degradation. AMT decays in reactions with secondary intermediates, reactive oxygen species, formed in reactions of the primary ones with dissolved oxygen. Singlet oxygen is responsible for 80% of herbicide oxidation, and • OH and O2 -• radicals-for the remaining 20% of AMT. It was found that quantum yield of AMT photodegradation (ϕ 365nm ) decreases linearly from 2.2 × 10-3 to 1.2 × 10-3 with the increase of fulvic acid concentration from 1.1 to 30 mg L-1 . On the contrary, the increase of AMT concentration from 0.8 to 25 mg L-1 leads to practically linear growth of ϕ 365nm value from 1.8 × 10-4 to 4 × 10-3 . Thus, the fulvic acid exhibits a good potential as UVA photooxidizer of organic pollutants sensitive to the singlet oxygen (ϕ 532nm (1 O2 ) = 0.025 at pH 6.5).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app