Add like
Add dislike
Add to saved papers

Analysis of partial volume correction on quantification and regional heterogeneity in cardiac PET.

BACKGROUND: The partial volume correction (PVC) of cardiac PET datasets using anatomical side information during reconstruction is appealing but not straightforward. Other techniques, which do not make use of additional anatomical information, could be equally effective in improving the reconstructed myocardial activity.

METHODS: Resolution modeling in combination with different noise suppressing priors was evaluated as a means to perform PVC. Anatomical priors based on a high-resolution CT are compared to non-anatomical, edge-preserving priors (relative difference and total variation prior). The study is conducted on ex vivo datasets from ovine hearts. A simulation study additionally clarifies the relationship between prior effectiveness and myocardial wall thickness.

RESULTS: Simple resolution modeling during data reconstruction resulted in over- and underestimation of activity, which hampers the absolute left ventricular quantification when compared to the ground truth. Both the edge-preserving and the anatomy-based PVC techniques improve the absolute quantification, with comparable results (Student t-test, P = .17). The relative tracer distribution was preserved with any reconstruction technique (repeated ANOVA, P = .98).

CONCLUSIONS: The use of edge-preserving priors emerged as optimal choice for quantification of tracer uptake in the left ventricular wall of the available datasets. Anatomical priors visually outperformed edge-preserving priors when the thinnest structures were of interest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app